Skip to main content

Lorentz transformation



Lorentz transformation and its inverse:





Define an event to have spacetime coordinates (t,x,y,z) in system S and (t′,x′,y′,z′) in a reference frame moving at a velocity v with respect to that frame, S′. Then the Lorentz transformation specifies that these coordinates are related in the following way:
where
is the Lorentz factor and c is the speed of light in vacuum, and the velocity v of S′, relative to S, is parallel to the x-axis. For simplicity, the y and z coordinates are unaffected; only the x and t coordinates are transformed. These Lorentz transformations form a one-parameter group of linear mappings, that parameter being called rapidity.
Solving the four transformation equations above for the unprimed coordinates yields the inverse Lorentz transformation:
Enforcing this inverse Lorentz transformation to coincide with the Lorentz transformation from the primed to the unprimed system, shows the unprimed frame as moving with the velocity v′ = −v, as measured in the primed frame.
There is nothing special about the x-axis. The transformation can apply to the y- or z-axis, or indeed in any direction parallel to the motion (which are warped by the Î³ factor) and perpendicular; see the article Lorentz transformation for details.
A quantity invariant under Lorentz transformations is known as a Lorentz scalar.
Writing the Lorentz transformation and its inverse in terms of coordinate differences, where one event has coordinates (x1t1) and (x1t1), another event has coordinates (x2t2and (x2t2), and the differences are defined as
Eq. 1:    
Eq. 2:    
we get
Eq. 3:     
Eq. 4:     
If we take differentials instead of taking differences, we get
Eq. 5:     
Eq. 6:     


Comments

Popular posts from this blog

An Oddly Tilted Planet

The rotation period of Uranus’s atmosphere is about 16 hours. Like Jupiter and Saturn, Uranus rotates differentially, so this period depends on the latitude. This can be measured by tracking the motions of clouds. To determine the rotation period for the underlying body of the planet, scientists looked to Uranus’s magnetic field, which is presumably anchored in the planet’s interior, or at least in the deeper and denser layers of its atmosphere. Data from Voyager 2 indicate that Uranus’s internal period of rotation is 17.24 hours. Voyager 2 also confirmed that Uranus’s rotation axis is tilted in a unique and bizarre way. Herschel found the first evidence of this in 1787, when he discovered two moons orbiting Uranus in a plane that is almost perpendicular to the plane of the planet’s orbit around the Sun. Because the large moons of Jupiter and Saturn were known to orbit in the same plane as their planet’s equator and in the same direction as their

Greek Geocentric Model

    M ost Greek scholars assumed that  the Sun, the Moon, the stars, and the planets revolve about a stationary Earth. A model of this kind, in which the Earth is at the center of the universe, is called a geocentric model. Similar ideas were held by the scholars of ancient China. Today we recognize that the stars are not merely points of light on an immense celestial sphere. But in fact this is how the ancient Greeks regarded the stars in their geocentric model of the universe. To explain the diurnal motions of the stars, they assumed that the celestial sphere was real, and that it rotated around the stationary Earth once a day. The Sun and Moon both participated in this daily rotation of the sky, which explained their rising and setting motions. To explain why the Sun and Moon both move slowly with respect to the stars, the ancient Greeks imagined that both of these objects orbit around the Earth. ANALOGY Imagine a merry-go-round th

Kuiper belt

I t is a  circumstellar disc  in the outer  Solar System , extending from the  orbit  of  Neptune  (at 30  AU ) to approximately 50 AU from the  Sun .  It is similar to the  asteroid belt , but is far larger—20 times as wide and 20 to 200 times as massive.  Like the asteroid belt, it consists mainly of  small bodies  or remnants from when the  Solar System formed . While many asteroids are composed primarily of  rock  and metal, most Kuiper belt objects are composed largely of frozen  volatiles  (termed "ices"), such as  methane ,  ammonia  and  water . The Kuiper belt is home to three officially recognized  dwarf planets :  Pluto ,  Haumea  and  Makemake . Some of the Solar System's  moons , such as Neptune's  Triton  and  Saturn 's  Phoebe , may have originated in the region. The Kuiper belt is distinct from the  theoretical   Oort cloud , which is a thousand times more distant and is mostly spherical. The objects within the Kuiper belt, to