Skip to main content

Arrokoth- The snowman in the space.



It was the year 2006, when NASA sent its satellite called NEW HORIZON to capture close up pictures of the Pluto residing at the edge of solar system.

The original goal was to demote Pluto from a planet to dwarf. But satellite captures that picture which will disclose the SNOWMAN in the Kuiper belt.




If you want to read more about kuiper belt, click here








Kuiper belt is the "sister" of asteroid belt.It lies behind Neptune. No real picture of objects in Kuiper belt was available.

The Photograph sent by NEW HORIZON, gave a clear insight of those heavenly bodies.





Although  have been proposed to explain the formation of Arrokoth and its peculiar properties, these encountered major challenges, and could not well explain important features of the Snowman, in particular its slow rotation speed around itself and its large inclination angle. In their Nature article, the Technion researchers present novel analytic calculations and detailed simulations explaining Arrokoth's formation and features.
The research was led by Ph.D. student Evgeni Grishin, postdoc Dr. Uri Malamud, and their supervisor Professor Hagai Perets, in collaboration with the German research group in Tübingen.

"Simple high-speed collision between two random objects in the Kuiper Belt would shatter them, as they are likely to be predominantly made of soft ice," said Mr. Grishin. "On the other hand, if the two bodies orbited each other in a circular orbit (similar to the moon orbiting the Earth), and then slowly in-spiraled to more gently approach each other and make contact, Arrokoth's rotation speed would have been extremely high, while the measured speed was actually quite low in respect to such expectations. Arrokoth's full rotation takes 15.92 hours. In addition, its angle of inclination (relative to the plane of its orbit around the sun) is very large—98 degrees—so it almost lies on the side relative to its orbit, a peculiar feature in itself."


"According to our model, these two bodies revolve around each other, but because they revolve together around the sun, they basically constitute a triple system," he said. "The dynamics of such triple systems are complex and are known as the three-body problem. The dynamics of gravitating triple systems is known to be very chaotic. In our study, we showed that the system did not move in a simple and orderly manner, but also did not behave in a totally chaotic way."
"It evolved from having a wide, relatively , into a highly eccentric, elliptical orbit through a slow (secular) evolution, much slower compared to the orbital period of Arrokoth around the sun," said Prof. Perets. "We could show that such trajectories eventually lead to a collision, which, on the one hand, will be slow, and not smash the objects, but on the other hand, produce a slowly rotating, highly inclined , consistent with Arrokoth's properties."
"Our detailed simulations confirmed this picture, and produced models closely resembling Arrokoth's snowman appearance, rotation and inclination," said Dr. Malamud, in conclusion.
The researchers also studied how robust and probable such processes are, and found them to potentially be quite common with as many as 20% of all Kuiper Belt wide binaries, and potentially evolving in similar ways.
Until now, said the researchers, it was not possible to explain the unique features of Arrokoth. It is a counterintuitive result, but the likelihood of collision in such configurations actually increases as the initial binary is more widely separated (but still bound) and the initial tilt angle is closer to 90 degrees.
"Our model explains both the high likelihood of collision as well as the unique data of the unified system today, and in fact predict that many more objects in the Kuiper Belt," said Mr. Grishin. "In fact, even Pluto's and Charon's system might have formed through a similar process, and they appear to play an important role in the evolution of binary and moon systems in the .






मराठी :

हे  2006 साल होते, जेव्हा सौर यंत्रणेच्या काठावर राहणा  प्लूटोचे जवळचे फोटो घेण्यासाठी नासाने त्याचे न्यू हॉरिजॉन नावाचे उपग्रह पाठवले होते.

मूळ ध्येय प्लूटोला एखाद्या ग्रहापासून ते बौनापर्यंत खाली आणण्याचे होते. पण उपग्रहाने ते छायाचित्र टिपले जे कुइपर पट्ट्यात स्नॉनमन उघड करेल.

कुईपर बेल्ट हा लघुग्रह बेल्टचा "बहीण" आहे. हा नेपच्यूनच्या मागे आहे. कुइपर बेल्टमधील वस्तूंचे कोणतेही खरे चित्र उपलब्ध नव्हते.

न्यू हॉरिजॉनने पाठविलेल्या छायाचित्रांनी त्या स्वर्गीय देहाची स्पष्ट माहिती दिली.

जरी अरोकोथची निर्मिती आणि त्यातील विचित्र गुणधर्मांचे स्पष्टीकरण देण्यासाठी वेगवेगळ्या मॉडेल्सना प्रस्तावित केले गेले असले तरी यास मोठ्या आव्हानांचा सामना करावा लागला आणि स्नोमॅनची महत्वाची वैशिष्ट्ये स्पष्टपणे समजावून सांगू शकली नाहीत, विशेषतः स्वतःभोवती फिरणारी वेग आणि तिचा मोठा झुकणारा कोन. त्यांच्या नेचर लेखामध्ये, टेक्शियन संशोधकांनी कादंबरी विश्लेषणात्मक गणना आणि एरोकोथची निर्मिती आणि वैशिष्ट्ये स्पष्ट करणारे तपशीलवार सिम्युलेशन सादर केले.

या संशोधनाचे नेतृत्व पीएच.डी. एबगेनी ग्रिशिन, पोस्ट डॉक डॉ. उरी मालामुड आणि त्यांचे पर्यवेक्षक प्रोफेसर हागाई पेरेट्स, तेबिंजेनमधील जर्मन संशोधन गटाच्या सहकार्याने.


श्री कुशिन म्हणाले, “कुइपर बेल्टमधील दोन यादृच्छिक वस्तूंमधील साध्या वेगवान टक्करमुळे त्यांचे तुकडे होतील आणि मुख्यत: ते मऊ बर्फाने बनलेले असतील," श्री ग्रिशिन म्हणाले. "दुसरीकडे, जर दोन मृतदेह एकमेकांना गोलाकार कक्षात फिरत असतील (चंद्राभोवती पृथ्वीभोवती फिरत असतील) आणि नंतर हळू हळू एकमेकांशी संपर्क साधण्यासाठी आणि संपर्क साधला असेल तर अ‍ॅरोकोथची फिरण्याची गती अत्यंत वेगळी झाली असती जास्त, परंतु अशा अपेक्षांच्या बाबतीत मोजली जाणारी गती प्रत्यक्षात अगदी कमी होती.एरोकोथची पूर्ण रोटेशन 15.92 तास घेते.त्याव्यतिरिक्त, त्याचा झुकणारा कोन (सूर्याभोवतीच्या कक्षाच्या विमानाशी संबंधित) खूप मोठा आहे - 98 डिग्री — म्हणून हे जवळपास त्याच्या कक्षाशी संबंधित आहे, स्वतःमध्ये एक वैशिष्ट्यपूर्ण वैशिष्ट्य आहे. "

"आमच्या मॉडेलनुसार, ही दोन संस्था एकमेकांभोवती फिरतात, परंतु सूर्याभोवती एकत्र फिरल्यामुळे मुळात तिहेरी प्रणाली बनते," ते म्हणाले. "अशा तिहेरी प्रणालींची गतिशीलता जटिल असते आणि ती तीन-शरीर समस्या म्हणून ओळखली जातात. गुरुत्वाकर्षण ट्रिपल सिस्टमची गती खूप अराजक म्हणून ओळखली जाते. आमच्या अभ्यासामध्ये, आम्ही सिद्ध केले की ही प्रणाली सोपी आणि सुव्यवस्थित रीतीने चालत नाही. , परंतु पूर्णपणे गोंधळलेल्या मार्गाने देखील वागले नाही. "

"हे विस्तृत, तुलनेने गोलाकार कक्षा असण्यापासून, अत्यंत विक्षिप्त, लंबवर्तुळाकार कक्षाच्या रूपात, मंद (सेक्युलर) उत्क्रांतीद्वारे विकसित झाले आणि सूर्याच्या सभोवतालच्या अर्रोकोथच्या कक्षाच्या तुलनेत खूपच हळू होते," असे प्रा. पेरेट्स म्हणाले. “आम्ही असे दर्शवू शकतो की अशा मार्गांनी शेवटी टक्कर घडवून आणली जी एकीकडे हळू होईल आणि त्या वस्तूंचा नाश करू शकणार नाही परंतु दुसरीकडे हळूहळू फिरणारी, अत्यंत झुकलेली वस्तू तयार करेल जी एरोकोथच्या गुणधर्मांशी सुसंगत असेल. "

"आमच्या तपशीलवार सिम्युलेशनने या चित्राची पुष्टी केली आणि अ‍ॅरोकोथचे स्नोमॅनचे स्वरूप, फिरणे आणि झुकाव यासारखे लक्षणीय मॉडेल तयार केले," असे डॉ. मालामुद यांनी सांगितले.

संशोधकांनी अशा प्रक्रिया किती मजबूत आणि संभाव्य आहेत याचा अभ्यास केला आणि कुईपर बेल्टच्या वाइड बायनरीजपैकी सुमारे 20% आणि संभाव्यतः अशाच प्रकारे विकसित होत असलेल्या संभाव्यतः सामान्य असल्याचे दिसून आले.

आतापर्यंत, अ‍ॅरोकोथची वैशिष्ट्ये सांगणे शक्य नव्हते, असे संशोधकांनी म्हटले आहे. हा एक प्रतिकूल परिणाम आहे, परंतु अशा कॉन्फिगरेशनमध्ये टक्कर होण्याची शक्यता प्रत्यक्षात वाढते कारण प्रारंभिक बायनरी अधिक व्यापकपणे वेगळे केले जाते (परंतु अद्याप बांधलेले आहे) आणि प्रारंभिक टिल्ट एंगल 90 डिग्रीच्या जवळ आहे.

"आमचे मॉडेल टक्कर होण्याची उच्च शक्यता तसेच युनिफाइड सिस्टमचा आजचा अनोखा डेटा या दोन्ही गोष्टींचे स्पष्टीकरण देते आणि कुईपर बेल्टमधील आणखीन अनेक वस्तूंचा अंदाज आहे," श्री ग्रिशिन म्हणाले. “खरं तर, अगदी प्लूटो आणि चेरॉनचीही व्यवस्था कदाचित अशाच प्रक्रियेद्वारे तयार झाली असावी आणि सौर यंत्रणेत बायनरी आणि चंद्र प्रणालीच्या उत्क्रांतीत ते महत्त्वाची भूमिका बजावताना दिसत आहेत.


Comments

Popular posts from this blog

An Oddly Tilted Planet

The rotation period of Uranus’s atmosphere is about 16 hours. Like Jupiter and Saturn, Uranus rotates differentially, so this period depends on the latitude. This can be measured by tracking the motions of clouds. To determine the rotation period for the underlying body of the planet, scientists looked to Uranus’s magnetic field, which is presumably anchored in the planet’s interior, or at least in the deeper and denser layers of its atmosphere. Data from Voyager 2 indicate that Uranus’s internal period of rotation is 17.24 hours. Voyager 2 also confirmed that Uranus’s rotation axis is tilted in a unique and bizarre way. Herschel found the first evidence of this in 1787, when he discovered two moons orbiting Uranus in a plane that is almost perpendicular to the plane of the planet’s orbit around the Sun. Because the large moons of Jupiter and Saturn were known to orbit in the same plane as their planet’s equator and in the same direction as their...

The Ptolemaic System

Explaining the nonuniform motions of the five planets was one of the main challenges facing the astronomers of antiquity. The Greeks developed many theories to account for retrograde motion and the loops that the planets trace out against the background stars. One of the most successful and enduring models was originated by Apollonius of Perga and by Hipparchus in the second century B.C. and expanded upon by Ptolemy, the last of the great Greek astronomers, during the second century A.D.  sketches the basic concept, usually called the Ptolemaic system. Each planet is assumed to move in a small circle called an epicycle, whose center in turn moves in a larger circle, called a deferent, which is centered approximately on the Earth. Both the epicycle and deferent rotate in the same direction As viewed from Earth, the epicycle moves eastward along the deferent. Most of the time the eastward motion of the planet on its epicycle adds to th...

Special Theory Of Relativity

The theory of special relativity explains how space and time are linked for objects that are moving at a consistent speed in a straight line. One of its most famous aspects concerns objects moving at the speed of light.  Simply put, as an object approaches the speed of light, its mass becomes infinite and it is unable to go any faster than light travels. This cosmic speed limit has been a subject of much discussion in physics, and even in science fiction, as people think about how to travel across vast distances. The theory of special relativity was developed by Albert Einstein in 1905, and it forms part of the basis of modern physics. After finishing his work in special relativity, Einstein spent a decade pondering what would happen if one introduced acceleration. This formed the basis of his general relativity, published in 1915. Einstein's work led to some startling results, which today still seem counterintuitive at first glance even though his...